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Abstract

The number of grains required for homogeneous elastic behavior of polycrystailine $2 is determined in this paper. The
two extreme cases of (i) no grain boundary slip and (1) free grain boundary sliding are examined. Detailed finite element
simulations of uniaxial loading of specimens containing polygonal grains are performed. The results show that at least 230
grains are required to homogenize the elastic properties. The effect of the grain’s elastic anisotropy on the homogenized
properties is more important when no grain boundary sliding is allowed; grain shape is more important when grain boundary
sliding is permitted. The stress components at the grain centers approximately follow the Gaussian distribution. The average
computed homogenized Young’s modulus and Poisson ratio at —16°C are: 9.58 GPa and 0.33 with no grain boundary
sliding; 7.83 GPa and 0.45 with free grain boundary sliding.

Keywords: Representative area element; Polycrystalline ice; Homogenized elastic properties; Heterogeneous ensemble of anisotropic grains

1. Introdoction

The homogencous elastic properties of materials
form an integral part of most constitutive theories, and
are required in the solution of boundary value prob-
lems. In polycrystalline aggregates, crystallographic
axes of neighboring grains are seldom aligned in the
same direction. Hence there is a mismatch in elastic
properties between neighboring grains in the global
axes frame. Theoretical estimates of the elastic con-
stants for polycrystals may be derived from the elas-
tic properties of the constituent monocrystals. The
theoretical elastic moduli for polycrystalline ice have
been calculated by Michel (1978), Sinha (1989a),
and Nanthikesan and Shyam Sunder (1994). These
authors used one or more averaging assumptions of
Voigt (1910) and Reuss (1929).

The method of Voigt (1910) assumes that all the
grains undergo an uniform strain and thus an uniform
stress. Thus on the scale of the grain, equilibrium is
violated. The method of Reuss (1929), on the other
hand, assumes a constant state of stress in all the
grains. Thus, although equilibrium is preserved, adja-
cent grains may have different deformations leading to
local violation of compatibility. Hill {1952) showed
that the Voigt and Reuss ( V-R) methods provide the
upper and lower bounds of the elastic stiffness mod-
uli. Other homogenization methods exist to calculate
the effective moduli of polycrystals. Among these, for
example, are the self-consistent and differential meth-
ods and the Hashin-Shtrikman bounds; the references
for, and details of these and other methods are pre-
sented in Nemat-Nasser and Hori (1993}, However,
the work of Nanthikesan and Shyam Sunder (1994)
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shows that the maximum discrepancy between the V-
R bounds on the elastic moduli of columnar grained
polycrystalline ice is only 4.2%. These authors con-
clude that the V-R bounds for polycrystalline ice are
so close to each other and to experimental values, that
either bound, or an average, can be used as the ho-
mogenized elastic moduli.

The fundamenta) assumptions behind the spatial av-
eraging V-R methods is that the polycrystal contains
a sufficient number of grains such that a continuous
distribution of grain orientations exists. In reality, the
number of grains in a polycrystal is finite. The aim
of this paper is to quantify how many grains are re-
quired to ensure an elastically homogeneous response
of polycrystalline ice. This number of grains speci-
fies the size of the representative element. Two ex-
treme idealized cases are considered: (i) neighboring
grains are perfectly bonded to each other, i.e., no rel-
ative slip between the grains, and (i1) no shear stress
transfer between neighboring grains, i.e., free grain
boundary slip. Relative displacement between grains
might be due to viscous effects, and/or due to a com-
pliant grain boundary zone. The idealized case of no
grain boundary slip approximates short duration, high
loading rate, or high frequency tests. In both idealized
cases the grains are assumed to remain elastic.

In this paper fresh water, columnar grained ice is
considered, The c-axes of the individual crystals lie
in the horizontal plane (the plane of the ice cover)
and are randomly distributed. Hence the ice cover is
transversely isotropic. This type of ice is found on
lakes, and rivers with low flow velocities. Michel and
Ramseier (1971) classified this ice type as $2. The
nature of S2 ice allows for planar modeling of the
polycrystalline aggregate. The behavior of ice can be
ductile or brittle depending on the loading rate and
temperature. The polycrystal deformation in the brittle
regime, as well as the peak stresses at the high end of
the ductile regime occurs at small strain (< 1%).

In the present study, detailed finite element simu-
lations of uniaxial loading of polycrystalline samples
of various sizes are conducted. The grain geometry
is modeled by modified Voronoi polygons (see Sec-
tion 2.1}. The grain’s elastic anisotropy is specified in
Section 2.2. The finite element model for the ensemble
of grains is set up, and the homogenized elastic prop-
erties are defined in Sections 2.3 and 2.4, respectively.
The experimental data on ice single crystal stiffness

moduli used in the simulations is reported in Section 3.
The results from the simulations of: (i) variation of
homogenized elastic properties with number of grains,
and (ii) the statistical distribution of residual stresses
within the grains, are presented and discussed in Sec-
tion 4.

2. The numerical model

The polycrystalline sample is idealized as an het-
erogeneous ensemble of randomly oriented, elastically
anisotropic grains of random shape but approximately
equal area. The two limits of (i) no grain boundary
sliding and (ii) free grain boundary sliding are inves-
tigated. The primary aim in this study is to determine
how many grains are required to ensure that the en-
tire sample behaves isotropically. To this end, simu-
lations of uniaxial loading of samples containing var-
ious numbers of grains are performed, and homoge-
nized elastic properties are computed. This section de-
scribes how the grain geometry and elastic properties
are set up, the computational model, and the method
of homogenization.

2.1. Modeling the grain geometry

A cross section taken through columnar grained S2
ice perpendicular to the column axes, reveals grains
that are approximately polygonal in shape and equal
in area (see Sinha (1989b) for a typical section).
The polygons are not regular and the number of facets
varies from grain to grain. In the past, the grain ge-
ometry has been modeled effectively by Voronoi tes-
sellation ¢ sometimes refered to as Theissen or Dirich-
let polygons), see for example Frost and Thompson
(1987) who considered different conditions of grain
nucleation and growth, In this paper the grains are rep-
resented by modified Voronoi polygons. The details
and the motivation for the method by which grain ge-
ometry is constructed follows.

Standard Voronoi tessellation begins from a set of
nucleation points, p. Next an unique triangulation grid
involving the p points is constructed by Delaunay tri-
angulation. Perpendicular bisectors of each side of the
triangles are found. The intersections of the perpen-
dicular bisectors form the vertices of the Voranoi poly-
gons. One property of Voronoi polygons is that a point
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lying anywhere within polygon P; is closer to its nu-
cleation point p; then to any other nucleation point.

Since the grains in a section of $2 ice all have ap-
proximately the same area {see e.g., Sinha, 1989b) the
nucleation points, p, cannot be distributed completely
randomly on the plain. Instead, the points have to be
constrained to lie a minimum distance apart, say 27;
this requirement is met by placing rigid disks of diam-
eter 2r randomly on the plain with no overlap, until
no more will fit. This results in the polygons/grains
having approximately the same area. This process still
leads to facet lengths, I;, which are very short com-
pared to the distance from the nucleation point to the
polygon vertex, Ve, 1.e., Ve; > [;. These short facets
result in numerical inaccuracies when solving for the
stresses and strains within the grains. To obviate these
difficulties the facets with [;/Ve; < 0.3 are lengthened.
The vertices on either end of the short facet are shifted
to:

L1

L1
NEW OLD _*i
Vi e Ve; 0.3

7 Ve 03 ) ()
where V; is the coordinate of vertex j (j = 1,2),
and ¢; is the centroid coordinate of the corresponding
triangle.

The specification of a sample size creates grain sliv-
ers on the boundaries as well as facets with I;/Ve; <
0.3; both lead to numerical difficulties. The short facets
are removed by shifting the polygon vertices perpen-
dicularly to the boundary. The grain slivers with nu-
cleation points lying outside a strip of width 2r/2.5,
which surrounds the sample, are removed; the vertices
of the neighboring polygons are moved perpendicu-
larly to the boundary. Finally, the nucleation points of
the polygons lying on the boundary are shifted to the
polygons’ geometric centers.

In all subsequent simulations 2r is set to 1 mm;
thus approximately defining the average grain size.
The area is defined only approximately due to the ran-
domness in creating the grain geometry. Fig. 1a shows
a 20 x 20 mm? sample with a typical grain geome-
try generated by the above process. The correspond-
ing histogram of the grain areas is shown in Fig. 2a.
The average grain area is 1.31 mm?>. As to be expected
most grain areas cluster around the mean. The few
grains which are slightly larger and slightly smaller
are those found on the boundary. Their area differs

TYPICAL GRAIN

Fig. 1. (a) Typical grain geometry in a 20 x 20 mm? sample of
305 grains; (b) Typical grain with orientation ¢.

from the mean due to the treatment of border grains
described above.

2.2. The grain elastic properties

Each grain in the polycrystalline aggregate is de-
fined by its crystal orientation, here specified by the
c-axis. The distribution of the c-axes in a macroscop-
ically homogeneous and isotropic material is random.
In the case of transversely isotropic 52 ice, the ¢-axes
are randomly distributed in the plane of isotropy. The
dynamic elastic stiffness tensor CZD can be taken as
constant for all the grains.

Since the overall macro-response of polycrys-
talline S2 ice is transversely isotropic with the plane
of isotropy being the plane of interest, the three-
dimensional C}” can be reduced to plane conditions.
Plane stress conditions are assumed since the ice
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Fig. 2. Typical histograms for a 20 %20 mm? sample of: (a) Grain
area; (b) Grain orientation

plate thickness is much smaller than the in-plane
%1 — X, dimensions. This assumption moedifies the
single grain orthotropic stiffness tensor components
CQD i; as follows:

D D
c c Cimnn CFa
g1l = 11—
g CP 5
B 3D
c D Cg?’ 13 G
e 12 = 17~
2 CP 5
D D
Ce” a3 Gy i

Con1 =C0 01 —
¢ £ P 5

D
CPyn CPxn
C3P 33

Ce=Cp" 1. (2)

3D
Con=C"n-

In order to obtain the macroscopic behavior of the
polyerystal, the components of C,; have to be deter-
mined in the global axes system. The components of
C, are usually specified in the axes system associ-
ated with the crystal lattice. The stiffness components
in the global axes systemn are given by the standard
fourth rank tensor transformation. In two dimensions
this transformation can be expressed as:

C;=R'C,R, (3)

where C contains the components of the grain stiff-
ness in the global axes system, T is the transpose op-
eration, and the transformation tensor R is given by:

cos?(¢&)  sin?({) 1sin(2{)
R=1{ sin®(2) cos’(¢) -Lsin(20) | . (B
—sin(24)  sin(24) cos(24)

The orientation of the grain is defined solely by £, the
angle between the c-axis and the global x; direction
(see Fig. 1b).

As indicated above, the c-axes are distributed uni-
formly in the x; — x» plane. Hence, in the numerical
simulations each grain in the aggregate is associated
with an orientation { which is chosen randomly from
the range 0° < ¢ < 180°. A typical histogram of
uniformly distributed ¢ is shown in Fig. 2b; this fig-
ure corresponds to the 20 x 20 mm?* sample shown in
Fig. 1a. Fig. 3 shows the grain geometries as well as
the spatial distribution of { for various specimen sizes;
notice the close resemblance with experimental obser-
vation of grain geometry reported in Sinha (1989b).

2.3. Computational model

The stress, strain and displacement fields in the het-
erogeneous assembly of grains are solved using the
finite element method. Each grain is discretized into
as many six-noded plane stress elements as therc are
facets in the grain. Fig. 4a shows a grain assembly and
the corresponding discretization; a typical discretized
grain is shown separately in Fig. 4b. Note that the
elements do not straddle the grain boundaries. The
anisotropic elastic material properties of each element
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%

5

Fig. 3. Typical grain geometries and spatial distributions of grain orientation, £, for specimen size of: (a} 20 x 20 mm?, (b) 10 x 10 mm?,

and (¢ 5 x 5 mm?

are assigned according to the grain orientation ¢ and
Egs. (3) and (4).

The two limits of (i) no grain boundary sliding,
and (ii) free grain boundary sliding are modeled
as follows. In the coordinate axes of the grain facet
x; — x5 (see Fig. 1b) constrain the displacement
compeonents, u!:

For no grain boundary sliding:
ut =u" and wht=ul.
For free grain boundary sliding:
uy" =l (5)

where the + and — refer to two points lying infinites-
imally close to, but on either side of, the grain bound-

al N 6 NODE ELEMENTS

TYPICAL GRAIN

Fig. 4. (a) Typical grain assembly and the finite element dis-
cretization; (b) Detail of discretization of a typical grain,
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{a) TRIANG. ELEMENTS {b) QUAD. ELEMENTS

Fig. 5. Discretization of a typical grain with: (a) Triangular ele-
ments; (b) Quadrilateral elements.

ary. These constraints on the displacements are en-
forced by the penalty method.

To verify the fineness of the discretization the num-
ber of nodes is varied by changing the type and or-
der of the elements: four- and eight-node quadrilat-
eral elements, and three- and six-node triangular ele-
ments are considered. Discretizations of a typical grain
with quadrilateral and triangular elements are shown
in Fig. 5(a) and (b) respectively. The global conver-
gence of the finite element discretization is quantified
by the total strain energy, £, of the aggregate:

1
6=%/a-edﬂ=5]P-udF, (6)
.

It

where o and € are (he stresses and strains, {2 is the to-
tal volume of the sample, P and & are tractions and dis-
placements on the boundary I". In a typical case, with
no grain boundary sliding, by increasing the number of
nodes from 1167 (triangular three-node elements) to
5131 (eight-node quadrilaterals) decreases £ by only
0.4%.' When grain boundary sliding is allowed, £
varies as follows: 67.3, 61.4, 57.8, and 55.6 for 1167,
2158, 3149, and 5131 nodes, respectively. The varia-
tion in £ by discretizing with six- versus eight-node el-
ements is 4%. Thus using six-noded elements is more
then acceptable when no grain boundary sliding is al-
lowed and is satisfactory when grain boundary slid-
ing is permitted. Note that the adopted discretization
does not capture all the details in the stress field vari-
ation close to the grain triple points. However, since
this paper is concerned with homogenized polycrystal
behavior and since the zones of high stress variation
are small, they have little effect on the sought solution
and will be ignored.

I This particular specimen contains 176 grains; the sample size
is 15 % 15 mm?.

2.4. Homogenized elastic constants

The overall planar response of polycrystalline 52
ice with a sufficient number of grains is isotropic.
This material symmetry is fully characterized by
two homogenized elastic constants: the homogenized
Young’s modulus, £, and the homogenized Poisson
ratio, #. These parameters are determined from nu-
merical simulations of a polycrystal sample subjected
to uniaxial loading as follows.

Consider a rectangular, multi grain sample of width
w and height # (see Fig. 1). The sample boundary
x, = 0 is prevented from displacing; u2 = 0. To
ensure numerical stability one node on this bound-
ary is also pinned. This allows unconstrained expan-
sion/contraction in the x; direction on x = 0. The
sample is loaded uniaxially by applying an uniform
displacement, u; all along the boundary x; = h.

The homogenized isotropic elastic constants are de-
fined as:

E= and 7 =——, (7)

Ql|£m

where the average quantities are:
Average normal strain components in xi and xp di-
rections:

th
1}

h

= |

A
1/u1(x1 =w,x2) —u1{x1 =0,x2) d
X2

<

W

/uz(xl,m =h) —ua(x;,x2=0) d
X1

=

€y = ”
0

(8)

Average normal stress component in X3 direction:

- wT R =h
fe [ Ren=T B ®
]

where T3 is the traction component in the x; direction.
Note that 3, is most easily obtained from the finite
element solution by summing all the nodal reaction
components Rz(x2 = h) on the boundary x; = f and
dividing by the sample width w and thickness .
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3. Material properties

The values for the dynamic elastic moduli of ice
single crystals are reported in the literature. The data
of Dantl (1969) and Gammon et al. (1983} are the
most comprehensive and accurate available to date.
The maximum difference between the elastic stiffness
components of these two data sets is 5.45 % at —16°C,
The reported uncertainty in the stiffness data of Gam-
mon et al. (1983) is less than in Dantl (1969): the
maximum uncertainty is +0.46% in the data of Gam-
mon et al. (1983) and +£7% in the data of Dantl
(1969). Farther, as pointed out by Nanthikesan and
Shyam Sunder (1994) the stiffness and compliance
data of Gamimon et al, (1983) satisfies the inverse
relationship, while the data of Dantl (1969} does not.
Although using the stiffness data from either reference
will have little effect on the present results, in view of
the above, the data of Gammon et al. ( 1983) are used
in the simulations.

The dynamic elastic stiffness of a single ice crystal,
measured using Brillouin spectroscopy at —16°C is
reported in Gammon et al. (1983):

CP(£=0%=
15.G610 5765 5765
13.929  7.082 0
13.929
3.4235
sym. 3.014
3.014
GPa, (10)

where in the grain’s axes system, x; —x;3 is the isotropy
plane in the transversely isotropic crystal; the c-axis
lies in the x; direction (¢ = 0°). The above elastic
constants are mildly temperature dependent. The fol-
lowing empirical relationship for the stiffness at tem-
perature T is presented in Gammon et al. (1983):

{1 -1.418 x 10731
(1 —1.418 x 10-3T) °

C2(T) = CP(Trep) (11)

where Tr is the temperature at which C:D is known
{Trer = ~16°C), and all temperatures are measured in
degrees Celsius. Eq. (11) shows that between 0°C and
—20°C the variation in dynamic stiffness of a single
crystal is practically negligible,

Reducing the single crystal stiffness, Eg. (10), to
plane stress conditions by using Eq. (2), with g3 = 0
and x; — x2 being the plane of interest, the following
is obtained:

Ce($=0°)
12.624 2.832 0
=] 2832 10328 0 GPa. (12)
0 0 3014

In all subsequent simulations these stiffness moduli
are used.

4. Results and discussion of numerical simulations

4.1. Number of grains required to homogenize
elastic properties

This section presents and discusses the results from
simulations of uniaxial loading of polycrystalline ice
specimens. Both limits of (i} no grain boundary slid-
ing, and (ii) free grain boundary sliding are investi-
gated. Only square samples (4 = w in Fig. 1a) are an-
alyzed. The following seven specimen sizes, 4 x A, are
considered: 5 x 5 mm?, 7.5 x 7.5 mm?, 10 x 10 mm?,
12.5% 12.5mm?, 15 x 15mm?, 17.5 x 17.5mm?, and
20 x 20 mm?, Three typical specimens, all different
in size, are shown in Fig. 3.

By choosing different seeds for the random number
generator, different grain geometries are created for
the same sample size, A x h. The orientations of the
grains, ', which effects the grains elastic properties in
the global axes frame, are also re-randomized. Simu-
lations with at least 25 different grain geometries and
orientations, for each of the first four sample sizes, are
petformed. For each of the remaining larger samples,
simulations with at least 30 different random grain ge-
ometries are conducted. Note that due to the method
of generating the grain geometry (see Section 2.1) the
number of grains in a & x & size sample is not con-
stant. The number of simulations conducted for each
sample size is thought to provide a good indication of
the variation in the homogenized elastic properties.

The efiect of elastic anisotropy in the 4 x & sample
is studied by randomly varying only the grain orienta-
tions, . The grain geometry is held constant for each
h x h sample. The same number of simulations are
performed for each sample size as reported above.
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The results presented below are independent of
grain size. This was verified by generating sel{-similar
samples, each composed of different mean grain size,
i.e., the grain tessellation for the different sized sam-
ples was identical. The computed homogenized elastic
properties were the same for the different self-similar
specimens. This observation is not surprising. In the
uniaxial loading simulations, the stress fields depend
on the length scale only near the triple points where
the solution is singular. For ice, the singularities at the
triple points are relatively weak (see, e.g., Guptaetal.,
1993). Hence the region effected by the singularities
are small compared with the grain area and have little
influence on the homogenized parameters sought.

It is interesting to note that in the self-consistent
method averaging only a small number of crystals
gives accurate overall moduli. For example, Iwakuma
and Nemat-Nasser (1984) calculated the overall mod-
ulj of a polycrystal solid, subject to finite elasto-plastic
deformation, and needed only 46, or fewer, grain ori-
entations (this corresponds to a sample smaller than
7.5 % 7.5 mm?). These authors add a cautionary note
that at large strains (presumably where the mismatch
between grains has developed substantially) the over-
all behavior depends on the number of grains consid-
ered. The following question arises: will the number
of grains required in the self-consistent method suffice
to homogenize the elastic properties when the poly-
crystal is viewed as an assembly of individual grains?
In the self-consistent method, the following auxiliary
problem is solved first: a homogeneous matrix which
possess the average macroscopic moduli with an em-
bedded single grain (usually circular or ellipsoidal in
shape) is subjected to nominal macroscopic loading.
Subsequently, the overall and single crystal moduli are
related by averaging over all crystal orientations and
shapes. The assumption in the self-consistent method
that each crystal is surrounded by an equivalent homo-
geneous matrix is valid only if a sufficient number of
grains surround the given crystal. An indication of this
number is provided by Laws and Lee (1989): these
authors catculate that at least 200 grains are required
for accurate residual stress fields when the polycrystal
is subject to a temperature drop.* Thus the number
of grains required to homogenize the elastic proper-

21 aws and Lee (1989) considered regular hexagonal grains
which were elastically isotropic but thermally anisotropic.

ties is expected to be greater than in the self-consistent
scheme.

4.1.1. Effect of temperature

Changing the temperature has the same effect on
all the components of the single crystal moduli, see
Eq. (11). Since linear elastic behavior is considered,
having the solution at a certain temperature, Tret» the
solution at a new temperature T can be scaled using Eq.
(11). In particular, the homogenized Young’s modulus
at a temperature 7, E(T), is given by:

(1—1.418x 107°T)

- T = o *
E(T) E(Tet) (1 - 1.418 x ]0*3Trcf)

(13)

The homogenized Poisson ratio should be unaffected
by a temperature change, since:

E(T)
2G(T)

= 1, (14)
where G is the homogenized shear modulus, and the
thermal effects on £(T) and G(7T) are the same and
hence cancel each other. Some evidence of the Poisson
ratio independence of temperature has been observed
experimentally by Langleben and Pounder (1963), in
the —3.6°C to —15°C range, albeit for sea ice. How-
ever, Sinha (1989b) observes that there is little dis-
crepancy in the reported dynamic Poisson ratio of dif-
ferent ice types.

4.1.2. No grain boundary sliding

The homogenized elastic properties can be cal-
culated by the spatial averaging methods of Voigt
(1910) and Reuss (1929) (as done by Nanthike-
san apd Shyam Sunder, 1994; Sinha, 1989a; Michel,
1978). As mentioned in the introduction, Hill (1952)
showed that the Voigt and Reuss (V-R} limits give
the upper and lower bound solutions for the aggre-
gate stiffness moduli. Nanthikesan and Shyam Sunder
(1994) calculate the V-R limits for the elastic prop-
erties of S2 ice in the plane of isotropy and at —16°C
to be:

9.726 > E = 9.431
0.320 < 7 < 0.334 (15)

Figs. 6a and 6b plot the homogenized Young’s
modulus, £, and Poisson ratio # versus the number
of grains obtained from the simulations with no grain
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Fig. 6. (a) Homogenized Young’s modulus, E, versus number
of grains; (b) Homogenized Poisson ratio, #, versus number of
grains. No grain boundary sliding; both grain geometry and grain
orientation varied.

boundary sliding. In this figure both the grains ge-
ometry and orientations are varied. The V-R upper
and lower bounds given in Eq. (15), are also plot-
ted. Figs. 6a and 6b show that as the number of
grains increase so the band of simulated homoge-
nized properties decreases, and then reaches approxi-
mately a constant width. For sample sizes larger than
17.5 x 17.5 mm?, the bands of homogenized proper-
ties produced by the simulations are very close to the
V-R band.

The effect of grain anisotropy is studied in Figs. 7a
and 7b, by varying only the grain orientations and

10200 T T T T T

L ) HUMERICAL SIMULATIOR
REUSS LIMIT
VOIGT LIMIT

111

a200 |- ]

10000 +

9800

as00 [

9400

HOMOGENIZED YOUNG'S MODULUS (MPa}

NO GRAIN BOUNDARY SLIDING |

9000 L. H Ll H | L
S0 100 150 200 250 300 350

NUMBER OF GRAINS

¥ T T
0.35 - Y [ HUMERIKCAL SIMULATION :
g REUSS LIMIT g
o [ . —  VOIGTUMIT
s [ | ]
L oot [ ] N
=
A M i
2 »
5] [ l ]
-9 -
[=]
[
N
=
I
(o
=]
=
=
T
0.31 |- m
® NO GRAIN BOUNDARY SLIDING
Il il 1 L 1 Ll h] L .
50 100 150 200 250 300 350

NUMBER OF GRAINS

Fig. 7. (a) Homegenized Young's modulus, £, versus number
of grains; (b) Homogenized Poisson ratio, P, versus number of
grains, No grain boundary sliding; only grain odentation varied.

keeping the grain geometry fixed. No grain boundary
sliding is allowed. The bands produced by varying
only { are wider than varying both grain geometry and
orientations. Thus when there is no grain boundary
sliding, the effect of grain anisotropy is greater than
the effect of grain shape.

The minimum, average and maximum values of the
homogenized elastic properties from all the simula-
tions are reported in Table 1. The percentage differ-
ence between the maximum and minimum values are
also given. From Table 1 it can be seen that the ho-
mogenized Poisson ratio converges slower than the
Young’s modulus. The averages of E and of # for dif-
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Statistics for homogenized Young's Modulus and Poisson ratio for various numbers of grains; no grain boundary sliding allowed; all

simulations considered.

Sample E (MPa) P

Size ( mm?) Min. Ave. Max. % Diff. M. Ave. Max. % 1.
5%5 9090 9604 10153 11.7 0.291 0.329 0.354 21,72
75x%75 9231 9549 9943 7.71 0.307 0.328 0.349 1377
10x10 9293 9581 9912 6.67 0310 0329 0.346 11.52
12.5%12.5 9461 9582 9750 3.05 0316 0.328 0.339 7.28
15%15 9462 9584 9769 3.24 0.317 0.328 0.339 7.12
17.5x17.3 9425 9576 9781 3.78 0.321 0.328 0.336 4.69
20%20 9436 9566 9702 2.83 0321 0.328 0.336 4.52

ferent sample sizes are all approximately the same.
This is due to the random variation of the grain geom-
etry and grain shape. Table 1 shows that samples larger
than 17.5 x 17.5 mm® produce bands narrower than
5% and which are very close to the V-R bounds. Note
that the simulations conducted here are by no means
exhaustive: however, the results indicate that a sam-
ple of 17.5 x 17.5 mm?, or approximately 230 grains,
serves as a representative area of the polycrystal.
Experimental data on the Young's modulus and
Poisson ratio for polycrystalline ice are available in
the literature. Gold (1958) tabulates results of the
sonic values of Young’s modulus and Poisson ratio
at —5°C. The reported values for the Young’s mod-
ulus range from 8.95 GPa to 9.94 GPa; the Poisson
ratio ranges from 0.31 to 0.365. Sinha (1978) mea-
sured the Young’s modulus of polycrystalline $2 ice
in the plane of isotropy, at temperatures between
—40°C and —45°C, and reports a range of 9.1-
9.8 GPa with an average of 9.3 GPa. More recently,
the Poisson ratio was measured by Sinha (1989b) at
—20°C to be 0.31-0.32. The numerical simulations
on 17.5 x 17.5 mm? samples predict the Poisson ratio
to lie in the range 0.32-0.34. The average homog-
enized Young’s modulus, corrected for temperature
according to Eq. (13), are: at —5°C, E = 9.43 GPa,
and at —40°C, E = 9.89 GPa. The simulated values
are in agreement with experimental measurements.

4.1.3. Grain boundary sliding

The results presented in this section are from sim-
ulations with free grain boundary sliding. In Figs. 8a
and 8b the homogenized Young’s modulus, E, and
Poisson ratio 7 are plotted versus the number of grains

in the sample; both the grains geometry and orien-
tations are varied. The effect of elastic anisoiropy is
studied in Figs. 9a and 9b, where only the grain ori-
entations are varied, for a single grain geometry. The
results from all these simulations are presented in Ta-
ble 2.

As to be expected, as the number of grains increases
so the bands in the homogenized elastic properties de-
creases. For samples bigger than 17.5 x 17.5 mm?, i.e.
samples containing more than 230 grains, the bands’
widths approximately stabilize. Note that the grains
on the specimen border are relatively unconstrained,
and due to free grain boundary slip, are almost un-
loaded. Hence in the smaller samples, where the num-
ber of grains on the border is a large fraction of the
total number of grains, large variability is seen in the
homogenized elastic properties.

The bands formed by varying only the grain orienta-
tions (Figs. 9a and 9b) are much narrower than when
both the grain geometry and the orientations are varied
(Figs. 8a and 8b). Thus grain shape is more impor-
tant than elastic anisotropy when grain boundary shd-
ing occurs. This conclusion is in contrast to the case
of no grain boundary sliding, where elastic anisotropy
is more dominant in producing the variability in the
polycrystal elastic constants,

Sinha (1989b) measured the effective Young’s
modulus and Poisson ratio of fresh water polycrys-
talline S2 ice at —20°C. His results show that the
Poisson ratio decreases monotonically from about
0.7 to 0.3 as the strain rate varies from 1077 7' to
10~2 s—!. The effective Young’s modulus increased
from 4 GPa to approximately 9.5 GPa. Gold (1958)
also reports data from experiments conducted on the
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Table 2

Statistics for homogenized Young’s Modulus and Poisson ratio for various numbers of grains; free grain boundary sliding permitted; all
simulations considered.

Sample E (MPa) B
Size ( mm?) Min. Ave. Max. % Diff. [ Ave. Max, % DIff.
5x5 6687 7408 8306 24.22 0412 0.475 0.503 22.11
THXDS 6947 7815 8148 [7.29 0425 0.456 0.560 31.83
10x10 7246 7738 8182 1291 0.417 0.463 0.526 26.06
12.5x12.5 7300 7738 8076 10.64 0.430 (.455 0.487 13.32
15x£5 7337 7765 8184 11.54 0.425 0.453 0.479 12.86
17.5x17.5 7526 7828 8060 7.10 0433 0.447 0473 9.15
20x20 7620 7827 7997 495 0.430 0.450 0.466 8.63
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Fig. 8. (a) Homogenized Young's modulus, E, versus number
of grains; (b) Homogenized Poisson ratio, #, versus number of
grains. Free grain boundary sliding; both grain geometry and grain
orientation varied.

Fig. 9. (a) Homogenized Young’s modulus, £, versus number
of grains; (b) Homogenized Poisson ratie, 7, versus number of
grains. Free grain boundary sliding; only grain orientation varied.




62 AA. Elvin/Mechanics of Materials 22 (1996} 5{-64

same type of ice, but under static loading conditions;
his results indicate Poisson ratio values of 0.31-0.54,
In both these references the stress was restricted to
low levels where the deformation was homogeneous
and elastic; both references reason that grain bound-
ary slip plays a role in the observed strains. The
average elastic parameters obtained from the simu-
lations when grain boundary sliding is allowed, are:
E =79 GPa and # = 0.45. These simulated values
are in accord with the above experimental obser-
vations. The predicted elastic properties correspond
to the strain range 107%s~! — 1073~ in the data
of Sinha (1989b). This strain range corresponds to
the ductile to brittle transition in polycrystailine ice
where maximum compressive stresses are observed.

4.2. Statistical distribution of stress at grain centers

Due to the elastic mismatch between neighboring
crystals, residual stresses are set up within the grains
when the polycrystal is loaded. Ortiz and Suresh
(1993) have shown that the residual stresses within a
polycrystal ceramic, subject to thermal cooling, fol-
low the Gaussian distribution. They considered an ar-
ray of regular hexagonally shaped grains, with elastic
and thermal anisotropy, and no grain boundary slip.
This section extends the work of Ortiz and Suresh
(1993). The statistical distribution of stresses when
a polycrystal of non-regular shaped grains subject to
uniaxial loading is presented; both no grain boundary
sliding and free grain boundary sliding are considered.

The probability distributions of the stress compe-
nents for two typical 20 x 20 mm? samples, one with-
out grain boundary sliding, and the other with free
grain boundary sliding, are plotted in Figs. 10 and 11,
respectively. The stresses only at the grain centers are
considered. The magnitude of the stress components
are normalized by the applied uniaxial stress; since the
specimen is loaded by a displacement, u; (see Sec-
tion 2.4), the equivalent normalizing stress is given by
|Eua/k|. In addition, Gaussian distributions, or nor-
mal curves are fitted to the simulated normalized stress
components, The Gaussian curves require the mean
stress component, &;, and the standard deviation, s;:

1 N
5’i=ﬁ2(0'?)j

j=1

I o
s?wjg((ai),-——m)m (16)

where N is the number of grains in the specimen, and
o is the normalized stress component £.

The stress components in a polycrystalline aggre-
gate approximately follow the Gaussian distribution,
as observed by Ortiz and Suresh (1993) in hexago-
nal grains. When no grain boundary sliding is permit-
ted (Fig. 10), the lateral &, and shear &3 have zero
mean stress components. In the uniaxial direction on
the other hand, &3, the mean normalized stress is -1;
the negative sign indicates that the applied displace-
ment loading, u; caused uniaxial compression. These
results are to be expected since equilibrium has to be
maintained.

When free grain boundary sliding is allowed, the
grains on the sample boundary are unconstrained, and
hence unloaded relative to the grains within the sam-
ple. The specimen boundary grains bias the stress
distributions, and hence these grains are excluded in
Fig. 11. The distributions for the free grain bound-
ary slip case are also approximately Gaussian. Note
however, while the mean shear stress component g3 is
once again zero, the other mean components, &, # 0
and &> # —1. The mean stresses are not the same as
in the no grain boundary sliding case because of two
effects. First, due to the applied uniaxial compression
and grain boundary slip, at each grain triple point, one
grain wedges the other two grains apart. This results
in: (i) the wedging grain having a locally high com-
pressive o3 component, and (ii) the other two grains
having locally high fensile oy components. Second,
since the stress components are sampled only at the
grain centers, instead of taking a volume average, the
wedging effect is not canceled out. Hence, the mean
lateral normalized stress component is tensile, &) > 0
while the mean axial component &y < —1. The local
grain wedging action, causing locally tensile o) fields,
has significant implications for microcracking in poly-
crystalline ice loaded in compression (see Elvin and
Shyam Sunder (1994) for details).

5. Conclusion

This paper examines how many grains are required
to homogenize the elastic behavior of polycrystalline
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52 ice. Two extreme limits are considered: (i) no grain
boundary sliding, and (ii) free grain boundary slip.
The grain geometry is modeled by modified Voronoi
polygons. The elastic anisotropy of the grains is ac-
counted for. Finite element simulations of uniaxial
compression of various size specimens are conducted.

Results show that at least 230 grains are required
in order for the polycrystal aggregate to exhibit ho-
mogenized elastic behavior. When no grain bound-
ary sliding is allowed, numerically computed homog-
enized Young’s modulus and Poisson ratio bands are
very close to the Voigt and Reuss theoretical upper
and lower bounds. The effect of grain anisotropy on
the homogenized elastic constants is more important
then grain shape when no grain boundary sliding is
allowed. The effect of grain shape on the homoge-
nized properties is dominant when free grain boundary
sliding occurs. The average computed homogenized
Young’s modulus and Poisson ratio are: 9.58 GPa and
(.33 with no grain boundary sliding; 7.83 GPa and
0.45 with free grain boundary sliding. The stress com-
ponents at the grain centers approximately follow a
Gaussian distribution, The same distribution was cal-
culated by Ortiz and Suresh (1993), but for an array of
hexagonal grains subject to thermal loading and with
no grain boundary sliding.

The 230 grains required to homogenize the elastic
response of the polycrystal defines the representative
area element. At least this number of grains has to be
considered when conducting micromechanical studies
on polycrystalline S2 ice. On the other hand, the res-
olution in large scale boundary value problems, with
homogeneous constitutive laws (e.g., in-plane inden-
tation of a floating ice sheet) especially in regions of
high stress fluctuation, cannot be finer than this repre-
sentative area element.

Acknowledgements

The comments of Prof. Nemat-Nasser and the help-
ful suggestions of N. Elvin are acknowledged. This
research was supported by the Office of Naval Re-
search (Grant No. N00014-92-J-1208) and by Miner-
als Management Service (Contract No. 14-35-0001-
30735).

References

Dant], G, {1969), Elastic Moduli of fce, in: N. Rielhl, B. Bullemer
and H. Engelhardt, eds., Physics of fce, Plenum Press,
New York, p. 223. -

Elvin, A.A. and S. Shyam Sunder (1994), Microcracking due
to grain boundary sliding in pelycrystalline ice under uniaxial
compression, Acta Metall. Marter., in press.

Frost, H. 1. and C.V. Thompson (1987), The Effect of nucleation
conditions on the topology and geometry of two-dimensional
grain structures, Acta Metall. 35, 529.

Gammon, PH., H. Kiefte, M.J. Clouter and W.W. Denner (1983},
Flastic constants of artificial and natural ice samples by
Brillouin spectroscopy, J. Glaciol. 29, 433,

Gold, L.W. (1958), Some observations on the dependence of strain
on stress for ice, Can, J. Phys. 36, 1265.

Gupta, V., R.C. Picu and H.J. Frost (1993), Crack nucleation
mechanism in saline ice, Ice Mechanics, in: 1B Dempsey,
Z.P. Bazant, Y.D.S. Rajapakse and $.S. Sunder, eds., ASME,
AMD, 163, p. 199.

Hill, R. (1952), The elastic behavior of a crystalline aggregate,
Proc. Phys. Soc. A 65, 349.

Jwakuma, T. and $. Nemat-Nasser (1984), Finite ¢lastic—plastic
deformation of polycrystalline metals, Proc. R Soc. Lond.
A 394, 87.

Langleben, M. P. and E.R. Pounder (1963), Elastic parameters
of sea ice, in: W.D. Kingery, ed., Jee and Snow, MIT Press,
Cambridge, MA, p. 69.

Laws, N. and 1.C. Lee (1989}, Microcracking in polycrystalline
ceramics: elastic isotropy and thermal anisotropy, /. Mech. Pirys.
Solids 37, 603.

Michel, B. and R.Q. Ramseier (1971}, Classification of river and
fake ice, Can. Geotech. J., 8, 36.

Michel, B. (1978), The strength of polyerystalline ice, Can. J
Civil Eng. 5, 285.

Nanthikesan, §. and §. Shyam Sunder (1994}, Anisotropic
elasticity of polycrystalline ice I, Cold Reg. Sci. Technol. 22,
149,

Nemat-Nasser, S. and M. Hori (1993), Micromechanics: Overall
Properties of Heterogeneous Materials, Elsevier, Amsterdam.

Ortiz, M. and S. Suresh (1993), Statistical properties of residual
stresses and intergranular fracture in ceramic materials, J. Appl.
Mech. 60, 71.

Reuss, AZ. (1929), Berechnung der FlieBgrenze von
Mischkristallen auf Grund der Plastizititsbedingung fur
Einkristalle, Z. Angew. Math. Mech. 9, 49.

Sinha, N.K. (1978), Rheology of columnar-grained ice, Exp.
Mech,, 18, 464,

Sinha, N.K. {1989a), Elasticity of natural types of polycrystalline
ice, Cold Reg. Sci. Technol. 17, 127.

Sinha, N.K. (198%b), Experiments on anisotropic and rate-
sensitive strain ratio and medulus of columnar-grained ice, J.
Offshore Mech. Arc. Eng. 111, 354.

Voigt, W. (1910), Lehrbuch Der Krystaliphysik, Feubner, Berlin.




MECHANICS OF MATERIALS

Instructions to Authors

Submission of papers

Manuscripts (one original + two copies), accompanied by a cover-
ing letter, should be sent to either the editor-in-chief or to the co-
editor indicated on page 2 of the cover,

Original material. 1t is the editorial policy of Mechanics of
Materials that all manuscripts submitted for possible publication ir
the journal should be accompanied by a statement by the authors
indicating; (a) Whether or not the paper is concumently submitted
for publication elsewhere. (b) Whether the paper, in its entirety, in
part, or in 2 modified version, has been published elsewhere. If so,
please supply pertinent information. (¢} Whether or not the paper
has previously been submitted for possible publication elsewhere
and was subsequently rejected or withdrawn. In either case, please
supply relevant information.

Refereeing Procedure. All contributions are reviewed expedi-
tiously but theroughly, In most cases, reliance will be placed on
local reviewers so that the time for the review is reduced to usually
three weeks, and certainly no more than two months, after receipt
of the manuscript. In exceptional circumstances, where comments
by several outside reviewers become necessary, the author will be
consulted no fater than three weeks after receipt of the manuscript.

Types of confributions

Mechanics of Materials contains research papers, invited review
articles, brief notes, letters to the editor, book reviews, and some
pertinent scientific items.

Manuscript preparation

All manuscripts should be written in good English. The use of
metric units of the SE (Systéme Internationale) form is obligatory.
The paper copies of the text should be prepared with double line
spacing and wide margins, on numbered sheets. See notes opposite
on electronic version of manuscripts.

Structure. Please adhere to the following order of presentation:
Article title, Author(s), Affiliation(s), Abstract, Keywords, Main
text, Acknowledgements, Appendices, References, Figure cap-
tions, Tables.

Corresponding author. The name, complete postal address, tele-
phone and fax numbers and the e-mail address of the correspond-
ing author should be given on the first page of the manuscript.
Keywords. Please supply 6-8 keywords of your own choice for
indexing purposes.

References. Must be cited in the text according to the Harvard
name/year convention, i.¢. listing the names of the authors with the
publication date placed in parentheses, e.g., Bishop and Hill
(1951) or (Armstrong, 1953; Bishop and Hill, 1951}, The cited ref-
erences should be listed in alphabetical order at the end of the arti-
cle. Each reference should include: names of authors, year of pub-
lication (in parentheses), title, abbreviated joumal title, volume
number, and the page numbers. For books, the publisher should be
given,

Mlustrations

lustrations should also be submitted in triplicate: one master set
and two sets of copies. The line drawings in the master set should
be original laser printer or plotter output or drawn in black india
ink, with careful lettering, large enough (3-5 mm) to remain legi-

ble after reduction for printing, Complex diagrams should be
referred to as figures and should be numbered consecutively; sim-
ple diagrams can be typeset. The photographs should be originals,
with somewhat more contrast than is required in the printed ver-
sion. They should be unmounted unless part of a composite figure.
Any scale markers should be inserted on the photograph, not
drawn below it. :

Colour plates. Figures may be published in colour, if this is judged
essential by the Editor. The Publisher and the author will each bear
part of the extra costs involved. Further information is available
from the Publisher.

After acceptance

Notification. You will be notified by the Editor of the joumal of
the acceptance of your article and invited to supply an electronic
version of the accepted text, if this is not already available.
Copyright transfer. You will be asked to transfer the copyright of
the article to the Publisher. This transfer will ensure the widest
possible dissemination of information.

Proofs. The corresponding author receives proofs, which should be
corrected and returned to the publisher within three days of
receipt. Please note that typesetting costs of extensive author’s cor-
rections in proofs, other than those of printer’s emors, will be
charged to the author.

Electronic manuscripts

The Publisher welcomes the receipt of an ¢lectronic version of
your accepted manuscript (preferably encoded in LaTeX). If you
have not already supplied the final, revised version of your article
(on diskette) to the Journal Editor, you are requested herewith to
send a file with the text of the accepted manuscript directly to the
Publisher by e-mail or on diskette (allowed formats 3.5" or 5.25"
MS-DOS, or 3.5" Macintosh) to the address given below. Please
note that no deviations from the version accepted by the Editor of
the journal are permissible without the prior and explicit approval
by the Editor. Such changes should be clearly indicated on an
accompanying printout of the file.

Author benefits

No page charges. Publishing in Mechanics of Materials is free.
Free offprines. The corresponding author will receive 50 offprints
free of charge. An offprint order form will be supplied by the
Publisher for ordering any additional paid offprints.

Discount. Contributors 1o Elsevier Science journals are entitled to
a 30% discount on al! Elsevier Science books.

Further information (after acceptance)

Elsevier Science B.V., Mechanics of Materials
Desk Editorial Department

P.O. Box 103, 1000 AC Amsterdam

The Netherlands

Tel.: + 31 20 4852745

Fax: + 31 20 4852431

E-mail: NHPNUCLEAR@ELSEVIER.NL







